Domains of Polyhedral Type and Boundary Extensions of Biholomorphisms

نویسنده

  • DMITRI ZAITSEV
چکیده

For D, D analytic polyhedra in Cn, it is proven that a biholomorphic mapping f : D→ D extends holomorphically to a dense boundary subset under certain condition of general position. This result is also extended to a more general class of domains with no smoothness condition on the boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Value Problems and Regularity on Polyhedral Domains

We prove a well-posedness result for second order boundary value problems in weighted Sobolev spaces on curvilinear polyhedral domains in Rn with Dirichlet boundary conditions. Our typical weight is the distance to the set of singular boundary points.

متن کامل

Regularity and Well Posedness for the Laplace Operator on Polyhedral Domains

We announce a well-posedness result for the Laplace equation in weighted Sobolev spaces on polyhedral domains in Rn with Dirichlet boundary conditions. The weight is the distance to the set of singular boundary points. We give a detailed sketch of the proof in three dimensions.

متن کامل

Regularity and Well Posedness for the Laplace Operator on Polyhedral Domains

We announce a well-posedness result for the Laplace equation in weighted Sobolev spaces on polyhedral domains in R with Dirichlet boundary conditions. The weight is the distance to the set of singular boundary points. We give a detailed sketch of the proof in three dimensions.

متن کامل

Anisotropic Regularity and Optimal Rates of Convergence for the Finite Element Method on Three Dimensional Polyhedral Domains

We consider the model Poisson problem −∆u = f ∈ Ω, u = g on ∂Ω, where Ω is a bounded polyhedral domain in Rn. The objective of the paper is twofold. The first objective is to review the well posedness and the regularity of our model problem using appropriate weighted spaces for the data and the solution. We use these results to derive the domain of the Laplace operator with zero boundary condit...

متن کامل

Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method

The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998